DECHEMA-Kolloquium "Feinstäube: Erkenntnisse, Maßnahmen und Bewertung", 27.10.2010, Frankfurt/Main

Gesundheitliche Wirkung von Feinstäuben

Prof. Dr. Elke Dopp
Institut für Hygiene und Arbeitsmedizin
Universitätsklinikum Essen

Einführung

- 1. Einleitung
- 2. Epidemiologie
 - 1. Kurzzeiteffekte
 - 2. Langzeiteffekte

- 3. Auswirkungen emissionsmindernder Maßnahmen
- 4. Mechanismen der Gesundheitsschädigung
- 5. Mechanismen der Partikelwirkung
- 6. Diskussion

Staubinduzierte Lungenerkrankungen

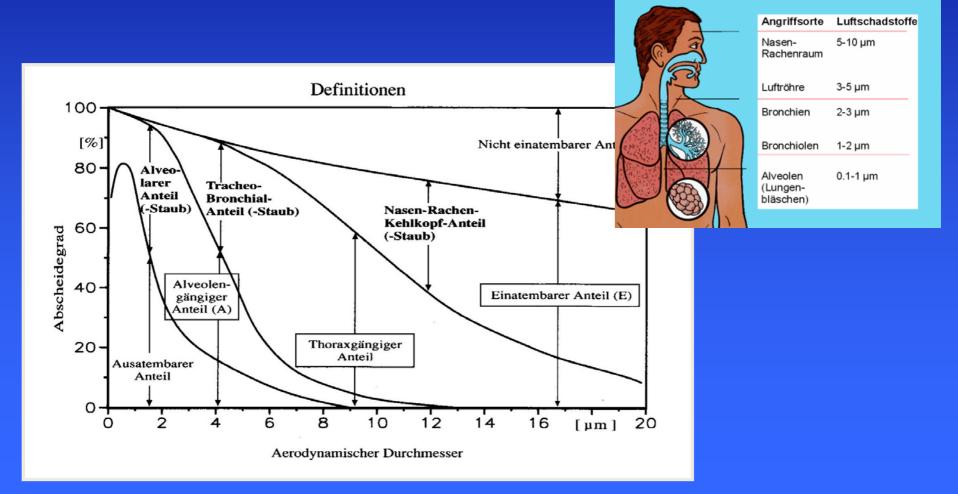
Pneumokoniose (Staublunge)

Silikose

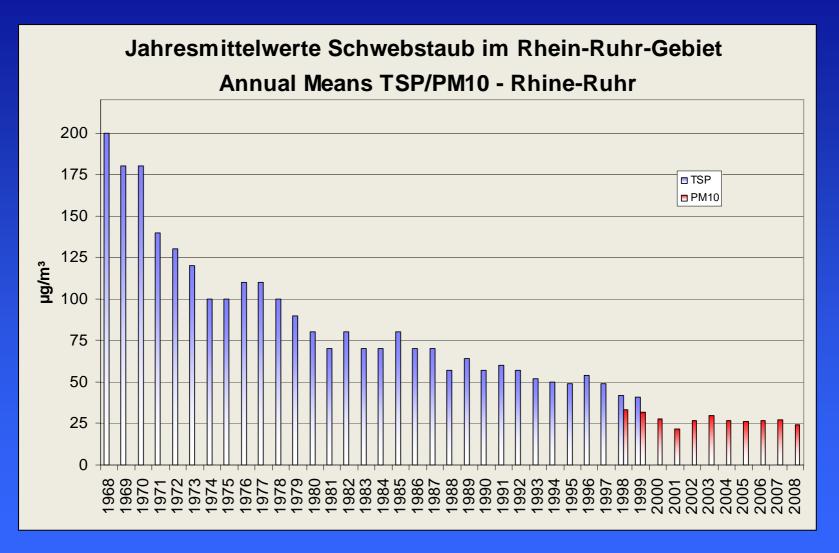
Bildung von knotenartigen Bindegewebsneubildungen, die zur Vernarbung der Lunge, Luftnot, Husten, Verschleimung, chronischer Bronchitis und

später Tod durch Ersticken

Fibrose

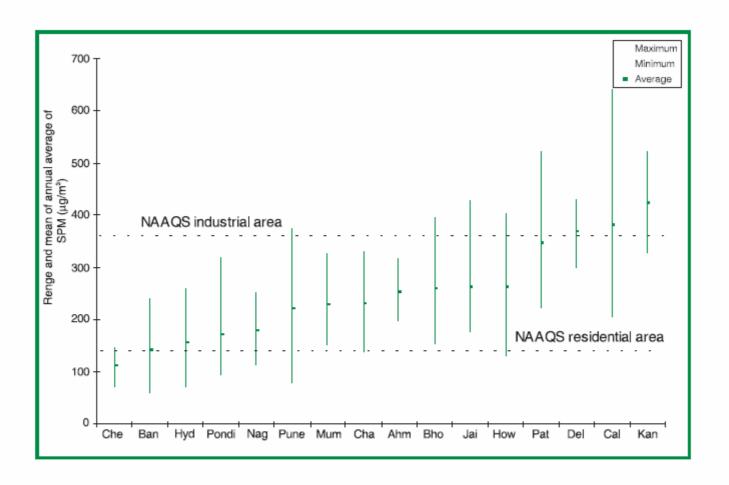

krankhafte Vermehrung des Bindegewebes

Bronchitiden


Lungenkrebs

Arbeitsplatzkonzentrationen

MAK-Wert für einatembare Stäube:
"Allgemeiner Staubgrenzwert" für A-Staub: 1,5 mg/m³
-"- für E-Staub: 4 mg/m³


<u>Umweltkonzentrationen</u>

24-h Grenzwert: 50 µg/m³

Jahresgrenzwert bis 1.1.2010: 40 μg/m³; Jahresgrenzwert ab 1.1.2010: 20 μg/m³

Aktuelle PM10-Werte (µg/m³) in verschiedenen Städten in Indien

Che – Chennai; Ban – Bangalore; Hyd – Hyderabad; Pondi – Pondicherry; Nag – Nagpur; Pune – Pune; Mum – Mumbai; Cha – Chandigarh; Ahm – Ahmedabad; Bho – Bhopal; Jai – Jaipur; How – Howrah; Pat – Patna; Del – Delhi; Cal – Calcutta; Kan – Kanpur.

Epidemiologische Studien zu Gesundheitseffekten durch Staubbelastung

• Eindeutiger Zusammenhang zwischen Schwebstaubkonzentrationen in der Umgebungsluft und Gesundheitseffekten

Kurzzeiteffekte —— Langzeiteffekte

- Harvard Six Cities Studie (Dockery et al., 1993) 8000 Studienteilnehmer über 14-16 Jahre beobachtet, in stark belasteten Städten bis zu 16 % erhöhte Mortalität
- American Cancer Society Studie (Pope et al., 1995) 550.000 Studienteilnehmer in 154 Städten über 8 Jahre beobachtet. Assoziationen zu PM2,5, SO₂
- Adventist Health Study of Smog (Abbey et al., 1999)
- Vetarans Administration Cohort Mortality Studie (Lipfert et al., 2000)
- Dublin Interventionsstudie (Clancy et al., 2002)
- Women's Health Initiative (Miller et al., 2007) Verdoppeltes Risiko für cardiovaskuläre Erkrankungen bei erhöhten PM2,5 Konzentrationen

Relevante Kurzzeit- und Langzeiteffekte nach Feinstaubexposition (WHO, 2004)

Kurzzeit-Effekte	Langzeit-Effekte	
Inflammatorische Lungeneffekte	Anstieg der Symptome im unteren Atemtrakt	
Respiratorische Symptome	Reduktion der Lungenfunktion bei Kindern	
Adverse Effekte des kardiovaskulären Systems	Anstieg von COPD (chronisch obstruktive Lungenerkrankung)	
Anstieg des Medikamentenverbrauches	Reduktion der Lungenfunktion bei Erwachsenen	
Anstieg der Krankenhauseinweisungen	Verringerung der Lebenserwartung	
Anstieg der Mortalität	überwiegend kardiopulmonale Mortalität und wahrscheinlich Lungenkrebs	

Folgen der (Ultra)Feinstaubexposition -Kurzzeiteffekte-

Zunahme von PM₁₀ um 10 μg/m³

- ⇒ Mortalität ↑ 0,5 1,0 %
- ⇒ Krankenhauseinweisungen wegen Atemwegs- und Herz-Kreislauferkrankungen ↑ 0,6 – 2,0 %
- ⇒ Medikamentenverbrauch bei Asthmatikern ↑ 3,4 %

Folgen der (Ultra)Feinstaubexposition -Langzeiteffekte-

Zunahme der (Ultra)Feinstaubkonzentration (PM $_{2,5}$) um 10 μ g/m 3

- **⇒ Mortalität** ↑
 - Gesamtmortalität 5 15 %
 - Herz-Kreislauf- und Atemwegserkrankungen 5 - 50 %

(Ultra)Feinstaubexposition und ischämische Herzerkrankungen

- Zunahme von PM₁₀ um 10 μg/m³
 - ⇒ American Cancer Society Studie (Pope et al., 2002, 2004)
 - **14 − 23 %**
 - ⇒ American Cancer Society, Los Angelos (Jerrett et al., 2005)
 - **12 − 73 %**
 - ⇒ American Cancer Society Studie, extended (Krewski et al., 2009)

Epidemiologische Studien im Ruhrgebiet

- **Sterblichkeit**. Kohorte von 4.800 älteren Frauen, die zwischen 1985 und 1994 an einer Basisuntersuchung teilgenommen hatten, zeigte eine signifikant erhöhte kardiopulmonale Sterblichkeit, wenn sie an stark befahrenen Strassen wohnten (Gehring et al., 2006)
- Lungenkrankheiten: in derselben Kohorte waren COPD und Einschränkungen der Lungenfunktion am stärksten mit PM10 und der Verkehrsbelastung assoziiert (Schikowski et al., 2005)
- Verkalkung der Herzkranzgefäße: 63 % häufigere Verkalkung der Herzkranzgefäße bei Personen, die bis zu 50 m von der Strasse entfernt wohnten (Hoffmann et al., 2007)

Gesundheitliche Auswirkungen partikulärer Luftbelastung

Epidemiologie: Zunahme der Gesamtmortalität, der kardiopulmonalen Mortalität und der Krebsmortalität bei zunehmender Belastung der Außenluft mit Feinstaubpartikeln

[Art der Belastung – Dauer – Konzentration]

Auswirkungen der Staubexposition

- auf das respiratorische System

Verschlechterung der Lungenfunktion Entzündungen (Bronchitis etc.) COPD Asthma bronchiale Bronchialkarzinome

- auf das kardiovaskuläre System

Herzfrequenzanstieg
eingeschränkte Herzfrequenzvariabilität
arterielle Vasokonstriktion
Anstieg der Fibrinogenkonzentration
Anstieg des arteriellen Blutdruckes
erhöhte Plasmaviskosität
Zunahme des C-reaktiven Proteins

Beispiele:

- 1.) Atlanta Olympiade 1996
- 2.) Busan, Südkorea Asienspiele 2002
- 3.) Rauchverbot in öffentlichen Einrichtungen

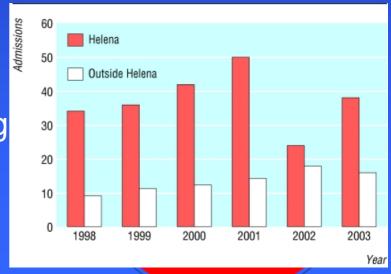
Auswirkungen zeitweiser Verkehrsbeschränkungen

Atlanta - Olympiade 1996:

zeitweise Verbesserung der Luftqualität führte zu zeitweisem Rückgang der Asthma-bedingten Krankenhauseinweisungen (Friedrage et al. 2004)

Auswirkungen zeitweiser Verkehrsbeschränkungen

- Rückgang der verkehrsabh gigen Schadstoffe um 25%
- Rückgang der Asthma-bedingten Krankenhauseinweisungen um 27% (Lee et al., 2007)


Rauchen in öffentlichen Einrichtungen

 seit 2007/2008 gilt ein Rauchverbot in öffentlichen Einrichtungen in Deutschland

Studien zu gesundheitlichen Auswirkungen des Rauchverbotes

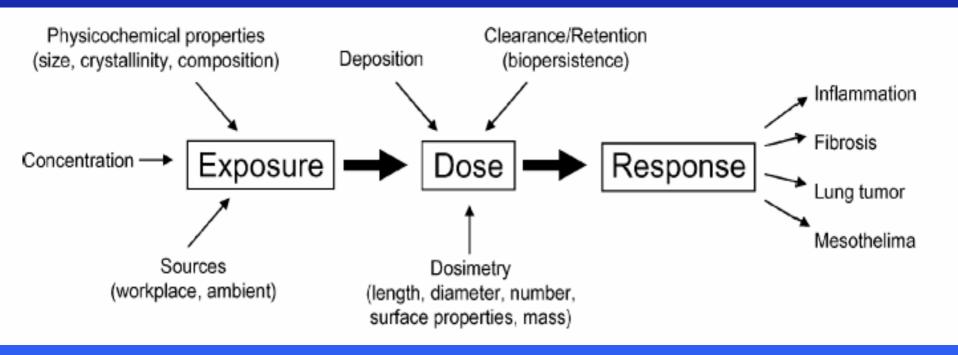
Sargent et al. (2004): Helena (USA) Herzinfarkte vor und nach Einführung des Rauchverbotes

EU-"Feinstaub-Richtlinie" seit 2005

	Mittelungs- zeitraum	Grenzwert	Zeitpunkt, bis zu dem der Grenzwert zu erreichen ist
Stufe 1			
1. 24-Stunden-Grenz- wert für den Schutz der menschlichen Gesundheit	24 Stunden	50 μg/m³ PM ₁₀ dürfen nicht öfter als <u>35mal</u> im Jahr überschritten werden	1. Januar 2005
Jahresgrenzwert für den Schutz der menschlichen Gesundheit	Kalenderjahr	40 μg/m ³ PM ₁₀	1. Januar 2005
Stufe 2 (1)			
1. 24-Stunden-Grenz- wert für den Schutz der menschlichen Gesundheit	24 Stunden	50 μg/m³ PM ₁₀ dürfen nicht öfter als <u>7mal</u> im Jahr überschritten werden	1. Januar 2010
2. Jahresgrenzwert für den Schutz der menschlichen Gesundheit	Kalenderjahr	20 μg/m ³ PM ₁₀	1. Januar 2010

⁽¹⁾ Richtgrenzwerte, die im Lichte weiterer Informationen über die Auswirkungen auf Gesundheit und Umwelt, über die technische Durchführbarkeit und über die bei der Anwendung der Grenzwerte der Stufe 1 in den Mitgliedstaaten gemachten Erfahrungen zu überprüfen sind.

Aktuelle PM₁₀-Werte (µg/m³) in Essen


Station	Tageswert am 20.01.2009	Tageswert am 25.01.2010	Gleitender 24 h-Wert am 05.10.2010 um 13:00 Uhr
Essen Vogelheim	19	65	30
Essen-Ost Steeler Str.	15	59	29
DUS Corneliusstrasse	36	72	34
Essen Gladbecker Str.	26	72	32

2008 ⇒ 67 Überschreitungstage

2009 ⇒ **40** Überschreitungstage

2010 ⇒ **20** Überschreitungstage

Determinanten der Staubwirkung

Staub ≠ Staub

Effekt ≠ Effekt

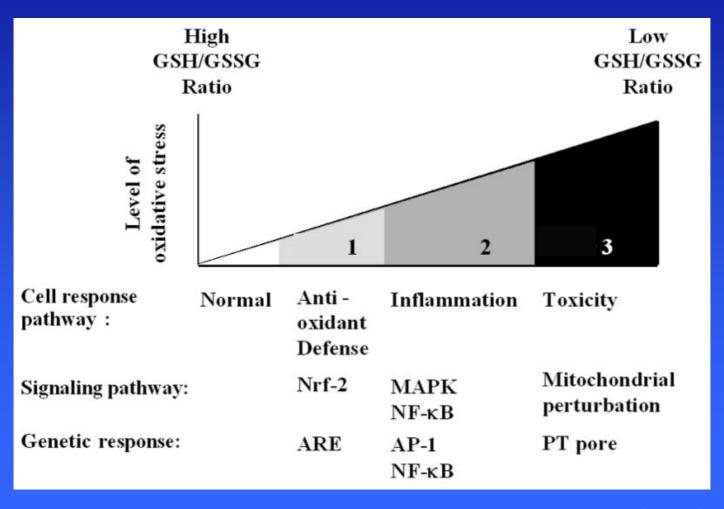
Körpereigenes Abwehrsystem

- Mechanische Ausschleusung: Niesen,
 Husten
- Makrophagen in der Lunge ("Clearance")
- Lysosomen in den Zellen
- Spezifische / Unspezifische Immunabwehr
 (Erkennen der Fremdpartikel und Abwehr)

Staubexposition und individueller Immunstatus

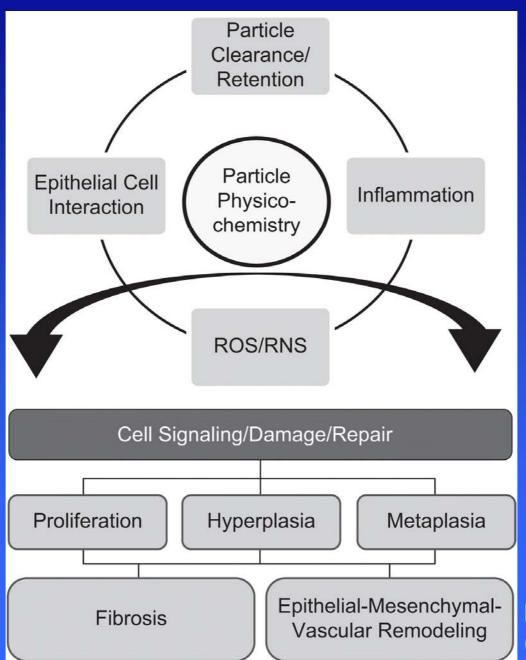
Niedrige Konzentration, kurze Exposition

Clearance, Spezifische/unspezifische Immunabwehr

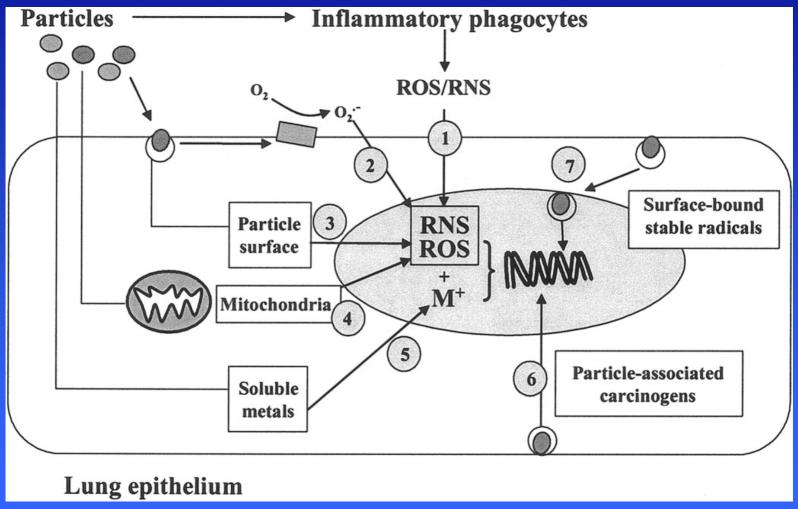

Besondere Gefährdungsgruppen:

- Kinder
- Asthmakranke
- Lungenvorgeschädigte
- Risikogruppen

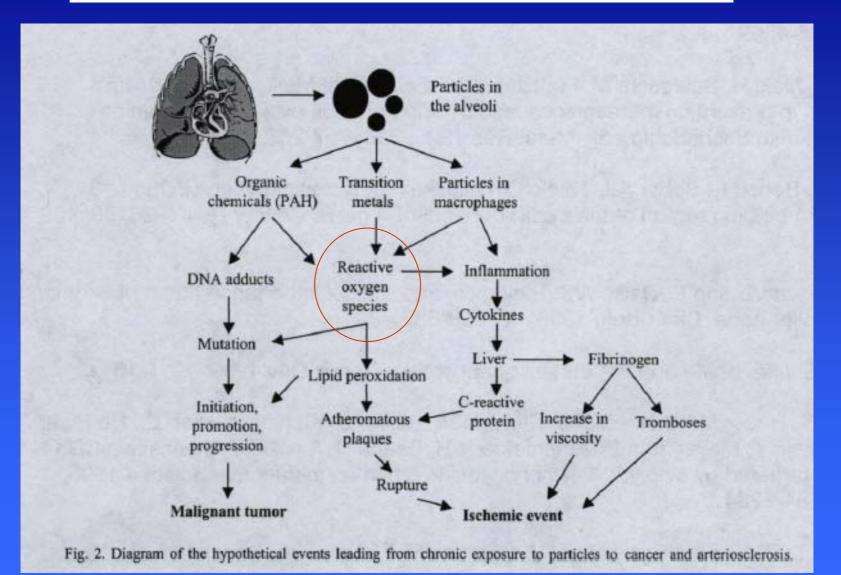
Hohe Konzentration, Lange Exposition


> Entzündungsreaktionen in der Lunge, Bronchitiden, Lungenentzündungen, Lungenkrebs Herzinfarkte/Schlaganfälle

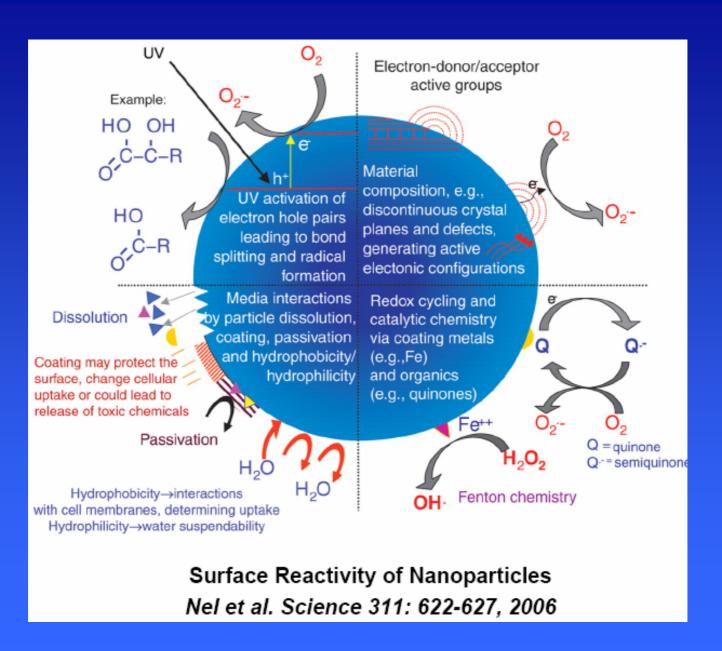
Zellulärer oxidativer Stress – Entzündung - Toxizität


Li et al. (2008)

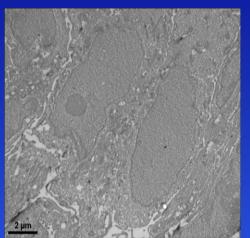
Mechanismen der Gesundheitsschädigung

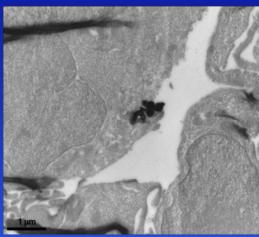

Madl and Pinkerton (2009)

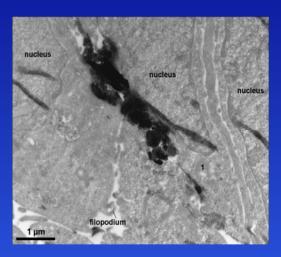
Wirkmechanismus - Lunge



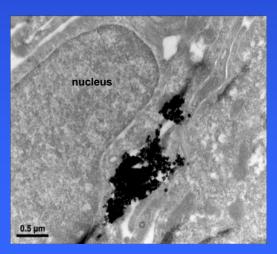
Knaapen et al., Int. J. Cancer (2004) 109(6):799-809


Wirkmechanismus – Herz/Kreislauf



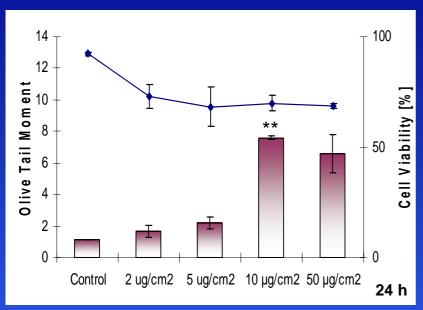

Mechanismen der Partikelwirkung

Partikelaufnahme in die Zellen

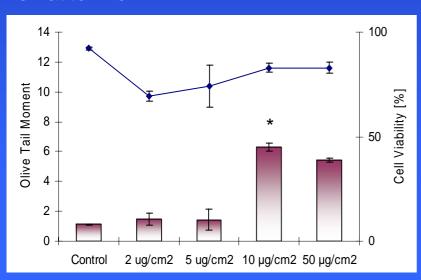

Kontrolle (TEM x 5.000)

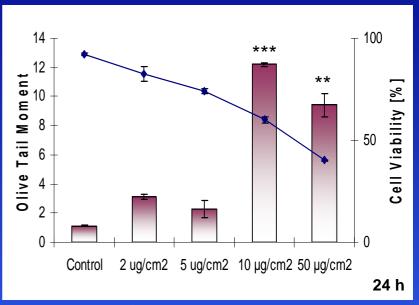
Hematit Ø 1,5 µm (x 12.500)

Arsenopyrit (x 12.500)

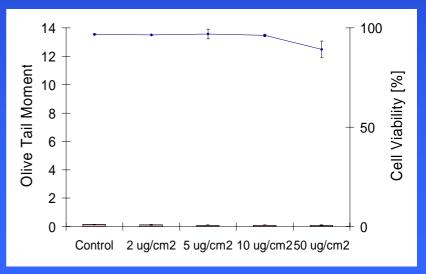


Bentonit (x 15.000)




Hematit Nanopartikel (x 20.000)

Zell- und DNA-schädigende Effekte in humanen Lungenzellen



Hematite fine

Hematite ultrafine

TiO₂ ultrafine

Mechanismen der zellulären Schädigung sind abhängig von der Partikelart

	TiO ₂ NP	Hematit NP
Genotoxicity (Comet assay: DNA breakage)	_	+
Cytotoxicity (Trypan blue assay)	-	+
Acellular radical formation (ESR)	û	⇩ (⇧)
Intracellular radical formation (H2DCFDA)	Û	delayed
Oxidative DNA-damage (8-OHdG)	+	_

- Kurz- und Langzeiteffekte durch umweltbedingte Staubbelastung sind in epidemiologischen Studien nachgewiesen worden
- dazu gehören sowohl respiratorische als auch cardiovaskuläre Effekte
- mit steigenden Staubkonzentrationen kommt es zu erhöhten Erkrankungsraten
- bei zeitweiligen Verkehrsverboten sinken die Krankenhauseinweisungen
- bei der Wirkung von inhalierten Stäuben spielen physiko-/chemische Parameter eine entscheidende Rolle
- der individuelle Immunstatus definiert besondere Gefährdungsgruppen
- der zelluläre oxidative Stress nimmt eine Schlüsselfunktion bei den Wirkmechanismen von inhalierten Stäuben ein
- an reaktiven Partikeloberflächen finden chemische Reaktionen statt, die zur Radikalbildung führen können
- die Mechanismen, die zur zellulären Schädigung führen können, sind abhängig von der Partikelart